
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 110
Volume 2, Issue 1, February 2011

Process Orchestration for Intrusion Detection

System based on SOA and Event Driven

Architecture Principles
 K.V.S.N.Rama Rao

1
 , Pandu Prudhvi

2
 , Manas Ranjan Patra

3

1BSIT , Hyderabad, India
2TechMahindra, Hyderabad, India

3Berhampur University, Berhampur, Orissa

{kvsnramarao@yahoo.co.in , pswamy.2009@gmail.com, mrpatra12@gmail.com }

Abstract: As the dependency on the internet in the recent years

is increasing greatly, threats and vulnerabilities were also rising

in sync to it. Several security systems like Intrusion detection

systems were developed to battle against these threats. But the

existing intrusion detection systems were not succeeding against

these threats, as they are unable to address challenges that

surround different types of attacks. These systems are designed

to deliver the best performance but not able to deal with some

attacks because they lack service oriented architecture to

support increasingly diverse clients with various network and

device capabilities. It is evident that no single technique can

guarantee protection against future attacks. .Hence there is a

need for integrated architecture which can provide robust

protection against a complete spectrum of threats. In this paper,

we propose a SOA based architecture model for IDS and its

process orchestration based event driven architecture.

Keywords: IDS, vulnerability, SOA, EDA, web services,

architecture.

1. Introduction

With the growing use of Internet, attackers are

becoming active in identifying the flaws in operating

systems, underlying network protocols, and different

software implementations. They are able to make

sophisticated attacks on information resources. As a

defense it is most common to use host based solutions like

antivirus software, fire walls etc. These approaches have

drawbacks in being insufficiently fast to meet new threats.

Now a day due to globalization, multiple stake holders are

involving in the activities of any organization. For

example, in the case of IT projects several stake holders

like end users, customers, vendors, legal entities and many

others are involved to complete the project successfully.

In such a distributed and heterogeneous setup,

security policies and their implementations suffer from the

inability to cope with the flexibility of multi-site and

multi-organization rules and the rigidity of a strong de-

militarized zone. In this paper, we discuss the service

oriented approach to build intrusion detection systems.

This approach has the following key features:

i) Helps in identifying and analyzing the tasks performed

by an IDS at a higher-level of abstraction.

ii) Helps in designing and building independently scalable

components to deal with different aspects of an attack

scenario.

iii) Helps in modeling the interactions among these

components in an efficient and flexible manner

iv) Helps in adding new services when necessary.

2. Intrusion Detection

Intrusion [1] is defined as set of actions aimed to

compromise the security goals. Intrusion Detection is the

process of identifying and responding to intrusion

activities. While modeling IDS we assume that normal

and intrusive activities have distinct evidence and the

system activities are observable. Any IDS have few

important components [1].

a)Sensor or Agent: It Monitors and analyze network

activity

b) Detection Engine: It contains rules and various

detection models.

c) Decision Engine: On receiving alarm from detection

engine it takes appropriate action and generates report.

Any typical IDS will focus on three areas of detection

methodologies.

a) Signature based detection: A signature [1] is a

pattern that corresponds to a known threat. Signature-

based detection is the process of comparing signatures

against observed events to identify possible incidents,

Examples of signatures are: A telnet attempt with a

username of ―root‖, which is a violation of an

organization’s security policy, an e-mail with a subject of

―Free pictures!‖, and an attachment filename of

―freepics.exe‖, which are characteristics of a known form

of malware. Signature-based detection cannot track and

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 111
Volume 2, Issue 1, February 2011

understand the state of complex communications, so it

cannot detect most attacks that comprise multiple events.

Hackers [2] often attack networks through tried

and tested methods from previously successful assaults.

These attacks have been analyzed by network security

vendors and a detailed profile, or attack signature, has

been created. Signature detection techniques identify

network assaults by looking for the attack fingerprint

within network traffic and matching against an internal

database of known threats. Once an attack signature is

identified, the security system delivers an attack response,

in most cases a simple alarm or alert.Success in

preventing these attacks depends on an up-to-the-minute

database of attack signatures,compiled from previous

strikes. The drawback to systems that rely mainly, or only,

on signature detection is clear: they can only detect attacks

for which there is a released signature. If signature

detection techniques are employed in isolation to protect

networks, infrastructure remains vulnerable to any

variants of known signatures, first-strike attacks, and

Denial of Service attacks.

b) Anomaly-based detection: It compares definitions [1]

of what activity is considered normal against observed

events to identify significant deviations. This method uses

profiles that are developed by monitoring the

characteristics of typical activity over a period of time.

The IDS then compares the characteristics of current

activity to thresholds related to the profile. Anomaly-

based detection methods can be very effective at detecting

previously unknown threats. Common problems with

anomaly-based detection are inadvertently including

malicious activity within a profile, establishing profiles

that are not sufficiently complex to reflect real-world

computing activity, and generating many false positives.

Anomaly detection [2] techniques are required

when hackers discover new security weaknesses and rush

to exploit the new vulnerability. When this happens there

are no existing attack signatures. The Code Red virus is an

example of a new attack, or first strike, which could not be

detected through an available signature. In order to

identify these first strikes, IDS products can use anomaly

detection techniques, where network traffic is compared

against a baseline to identify abnormal—and potentially

harmful—behavior. These anomaly techniques are

looking for statistical abnormalities in the data traffic, as

well as protocol ambiguities and atypical application

activity. Today’s IDS products do not generally provide

enough specific anomaly information to prevent

sophisticated attacks and if used in isolation, anomaly

detection techniques can miss attacks that are only

identifiable through signature detection.

c) Denial of Service (DoS) Detection [2]

The objective of DoS and Distributed DoS attacks is to

deny legitimate users access to critical network services.

Hackers achieve this by launching attacks that consume

excessive network bandwidth or host processing cycles or

other network infrastructure resources. DoS attacks have

caused some of the world’s biggest brands to disappoint

customers and investors as Web sites became inaccessible

to customers, partners, and users—sometimes for up to

twenty-four hours. IDS products often compare current

traffic behavior with acceptable normal behavior to detect

DoS attacks, where normal traffic is characterized by a set

of pre-programmed thresholds. This can lead to false

alarms or attacks being missed because the attack traffic is

below the configured threshold.

IDS can be deployed at the following places to monitor

activities.

a) Host based IDS: which monitors the characteristics of

a single host and the events occurring within that host for

suspicious activity.

Ex: Analyze shell commands, Analyze system calls made

by send mails etc.

b) Network-Based IDS: this monitors network traffic for

particular network segments or devices and analyzes the

network and application protocol activity to identify

suspicious activity.

Ex: Watch for violations of protocols and unusual

connection patterns, look into the data portions of the

packets for malicious command sequences etc.

In order to robustly protect enterprise network against the

complete spectrum of threats and vulnerabilities, there is a

need for robust architecture. But due to the lack of

superior architectural support, current IDS are facing

various challenges which are discussed below.

3. Current IDS Challenges
 Intrusion Detection Systems today are facing several

challenges [2].

Incomplete attack coverage: IDS products typically

focus on Signature, Anomaly, or Denial of Service

detection. Network security managers have to purchase

and integrate point solutions from separate vendors or

leave networks vulnerable to attack.

Inaccurate detection: IDS products’ detection

capabilities can be characterized in terms of accuracy and

specificity. Accuracy is often measured in true detection

rate—sometimes referred to as the false negative rate—

and the false-positive rate. The true detection rate

specifies how successful a system is in detecting attacks

when they happen. The false-positive rate tells us the

likelihood that a system will misidentify benign activity as

attacks. Specificity is a measure of how much detailed

information about an attack is discovered when it is

detected. IDS products today are lacking in both accuracy

and specificity and generate too many false-positives,

alerting security engineers of attacks, when nothing

malicious is taking place. In some cases, IDS products

have delivered tens of thousands of false-positive alerts a

day. There is nothing more corrosive to network vigilance

than a jumpy security system, which is continually issuing

false alarms.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 112
Volume 2, Issue 1, February 2011

Detection, not prevention: Systems concentrate on attack

detection. Preventing attacks is a reactive activity, often

too late to thwart the intrusion.

Designed primarily for sub-100Mb/s networks:

Solutions have simply not kept up with the speed and

sophistication of network infrastructure and cannot

accurately monitor higher-speed or switched networks.

Performance challenged: Software applications running

on general purpose PC/server hardware do not have the

processing power required to perform thorough analysis.

These underpowered products result in inaccurate

detection and packet dropping, even on low bandwidth

networks.

Lack of high-availability deployment: Single port

products are not able to monitor asymmetric traffic flows.

Also, with networks becoming a primary mechanism to

interact with customers and partners, forward-thinking

organizations have developed back-up systems should

their current infrastructure fail in any way. The inability of

current IDS products to cope with server failovers renders

them virtually useless for any mission-critical network

deployment.

Poor scalability: Primarily designed for low-end

deployments, today’s IDS products do not scale for

medium and large enterprise or government networks.

Here monitored bandwidth, the number of network

segments monitored, the number of sensors needed, alarm

rates, and the geographical spread of the network exceed

system limits.

No multiple policy enforcement: Current products

generally support the selection of only one security policy

for the entire system, even though the product may

monitor traffic belonging to multiple administrative

domains—in an enterprise this could be the finance,

marketing, or HR functions. This one size fits all approach

is no longer acceptable for organizations that require

different security policies for each function, business unit,

or geography.

Require significant IT resources: IDS products today

require substantial hands-on management—for

example,the simple task of frequent signature updates can

take up a lot of time and skilled engineering

resources,delivering a very high total cost of ownership.

Concisely, one can state that many of the IDS

implementations are not designed to co-operate. To

address these challenges, a new architecture needs to be

developed for even the most demanding enterprise

networks.

 Hence we propose an architecture that works for problem

of a multi-site IDS for a multi-business scenario, shown in

Figure.1, where each business can have a custom defined

set of rules implemented at each location of choice.

Figure 1: Distributed IDS deployed across mutli-location

corporate network

4. Model Architecture for Proposed IDS

Figure 2 summarizes the architecture of the fast Ethernet

IDS system designed.

The proposed solution contains a Cache component that

collects network packets.

The functionality of the components are explained below.

Sampler: The Sampler randomly/heuristically picks up

sample packet windows (series of contiguous packets) and

sends them to the Network Packet Analyzer component.

The sampling can be done in a random fashion or by using

a heuristic.

Network Packet Analyzer: The Analyzer and the Pre-

processing engine analyze the packets and convert them

into a standard XML format by stripping the network and

DLL headers. This metadata is sent for processing to the

next component i.e. the ―Rules Engine‖ which can be an

SOA component.

Business Rules Engine: The Rules engine is a SOA [3]

enabled component of the application that facilitates the

XML packet to be checked for anomalies against

suspicious activities and pre-defined business rules. This

component should be able to detect packets from

invalid/untrusted IPs and domains. DoS attacks, Filtering,

Screening, Authentication, Trust, etc. related issues can be

addressed at this component. The Rules engine should be

SOA enabled to allow the organization to implement and

customize the rules based on the location of the IDS on

the network. For example in a large enterprise, HR may

need a different set of rules implemented as against the

finance and there may be some organizational rules

applicable to all departments. Rules must be classified as

preemptive/non-preemptive. A web-service [4] client can

allow for posting of rules to be consumed and for rules to

be published [5] from one instance of the IDS to another

which is one of the many advantages of a SOA enabled

system. The rules engine upon detecting anomaly will

automatically forward to alert agent component or manual

intervention component.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 113
Volume 2, Issue 1, February 2011

Figure 2: Proposed Model of the IDS component showing the SOA enabled external interfaces and custom built internal

components

Alert Agent: If directed to alert agent component then the

alerts are audited, logged, and mailed to concerned

authorities.

Manual Intervention: On the other hand, if the threat is

not that much harmful , they are directed to manual

intervention component where they can be manually

addressed by administrator of the location. The Manual

intervention application may flag to either further analyze

or release the associated packets to the verifier. If all

packets in a sample packet window are cleared by

Business Rules Engine, then the packets go for a check of

known attack signatures to the verifier.

Verifier: The Verifier component checks the packets

against attacks picked from a local signature database.

This DB is pre-populated from external and publicly

known signatures and other IDS instance detected

signatures. These signatures are also batch mode

synchronized between IDS instances through the Updater

and Digester service component. Whenever the verifier

component detects a known signature match, it

immediately discards the packet and the payload. In case

of innocuous packets it can inform the cache to release

them. For packets that have matched a possible known

attack, the packets and the payload can be sent into the

heuristic and acute scanner. Since the signatures are

hashed, comparing them in the verifier against new XMLs

and network packet payloads becomes easy and quick to

achieve the ―fast Ethernet‖ speeds that this architecture

claims.

Heuristic and Acute Scanner: This will perform further

analysis to detect newer form of attacks or decisively

declare a packet/source as safe. This can over a period of

time detect new attacks and recover from false alarms.

Thus if a payload was marked as possibly harmful, a fuzzy

logic AI agent running in the heuristic scanner can verify

the safety or the hostility of the payload to a pre-

determined degree of threshold (say 25% to 80%) before

declaring and publishing it to other instances through the

Master DB and also updating the local DB.

Updater and Digester: The updater listens for updates on

a daily basis from the Master DB, which is connected on

the cloud and sends web-service based publish notices to

all instances. The updater then picks up these XMLs and

their packet payloads and digests them using fast and

compressive hashing algorithms that compact this

information and store it in the local signature DB. The

updater and digester component in conjunction with the

Business Rules engine thus ensures that over a period of

time the IDS learns to detect unknown attacks and thus

can prevent them as well making it a true IDS

Master Database: It is kept updated through SOA

components about attacks detected or false alarms

nullified at the distributed locations. The Master Database

on the next day updates all IDS instances local databases

Block and Persist: This component fires whenever the

Manual intervention module marks a XML cum payload

pair as suspicious or malicious or if the alerter escalates a

known business rule violation. The component simply

publishes the packet to be updated into the local DB via

the Updater and Digester service and to the MasterDB

which runs a similar Updater and Digester service

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 114
Volume 2, Issue 1, February 2011

In the proposed model, several components such as

Business Rules Engine, Block and persist, Heuristic and

acute scanner and Updater & Digester are web services.

The advantage of using web-services clients here is that it

becomes easy to update the remote DB and the local DB

through common interfaces and in future to publish the

same to other external service consumers as well, e.g.

security provider Databases or public signature databases

– on which the current system relies as well.

 The best architecture to integrate web services is known

to be service oriented architecture (SOA).A brief

description of web service, SOA, SOAD Process are

discussed in the next section.

5. Service Oriented Architecture

Service Oriented Architecture (SOA) [6] is a business-

centric IT architectural approach that supports integrating

your business as linked, repeatable business tasks, or

services.

A service is a mechanism to enable access to one or more

capabilities, where the access is provided using a

prescribed interface and is exercised consistent with

constraints and policies as specified by the service

description. A Web service provides one way of

implementing the automated aspects of a given business

or technical service.

Services generally adhere to the principles of service-

orientation such as abstraction, autonomy, composability,

discoverability, formal contract, loose coupling,

reusability, statelessness

Why SOA?

SOA helps create greater alignment between IT and line

of business while generating more flexibility - IT

flexibility to support greater business flexibility. Your

business processes are changing faster and faster and

global competition requires the flexibility that SOA can

provide. SOA can help you get better reuse out of your

existing IT investments as well as the new services you're

developing today. SOA makes integration of your IT

investments easier by making use of well-defined

interfaces between services. SOA also provides an

architectural model for integrating business partners’,

customers’ and suppliers’ services into an enterprise’s

business processes. This reduces cost and improves

customer satisfaction.

SOA is a suitable architecture style when reusability,

integration and agility are key concerns for an enterprise.

Basically the four tenets of Service orientation [7] are as

follows

• Boundaries are explicit

• Services are autonomous

• Services share schema and contract, not class

• Compatibility is based upon policy

SOA Design Principles

 Deciding what functionality makes sense to

expose as a service

 Separating and modularizing the business logic

to facilitate reuse and flexibility

 Loosely coupling services to support rapid

development when requirements change

 Designing an appropriate granularity of services

 Planning and implementing all the SOAD steps.

5.1 SOAD Process [8]:

The term Process means ―sequence of steps required to

develop or maintain software‖[9].A process deals with

what of developing a software while a methodology deals

with how of developing a software. With the introduction

of object oriented paradigm, OOAD process has been in

use extensively.

Object oriented analysis and design process involves

modeling real world objects based on the requirements

described as a set of use cases, realizing the use cases

through a process of identifying the analysis

classes(boundary, control and entity) and mapping the

analysis to technology elements that constitute the design

classes. Classes are fine grained elements that are tightly

coupled. Design classes can be implemented through

programming and tested to develop the required

application. But OOAD Process presents several

difficulties [10].Since the OO applications granularity is at

class level, there will be tight coupling and strong

associations because class hierarchies are based on

inheritance. .But on the other hand, services are loosely

coupled.

In Service model, there will two important roles. Service

Provider who exposes services and Service Consumer

who consumes service. There will be a service contract

between these two parties to define the type of messages

they can exchange or operations they can perform. Also

there will be a data contract between the client and the

service. These contracts enables loose coupling. The key

considerations of service model such as reusability,

integration and agility will result in four types of services

[11].

http://en.wikipedia.org/wiki/Web_service

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 115
Volume 2, Issue 1, February 2011

Client services: These deliver content to the

business users that require an aggregated enterprise

view. They provide presentation content to the

―front-end‖ applications of the enterprise such as

Portal, dashboard or CRM applications that provide

the necessary presentation capabilities and typically

are service consumers for the other services in the

Enterprise.
Business Process management services (Process

services): These allow for externalization of

business processes in an orchestrable fashion

resulting in agility for the enterprise.

Business Application services (Activity services):

These are reusable business level services that can be

orchestrated as part of a configured business process.

 Data Services (Entity services): These encapsulate

access to data in various sources such as ERP, legacy,

a data warehouse or a system external to the

organizational context

 These four services are integrated by Enterprise

service bus. Considering these 4 services, SOAD

process consists the following steps.

Step1: Gather objectives and business requirements

of the application.

Step2: Perform Business Process Modeling (BPM)

that involves identification of business processes and

workflows that applications in the enterprise would

need to support to meet the business objectives. The

business process model provides the workflows that

may be expressed as Business Process Execution

Language(BPEL), configured and orchestrated to

generate the Business process services. The business

process model generated through BPEL is the key

artifact of SOAD Process. This will serve as an input

to develop four services which were discussed above.

Step3: Implementation: A technology stack is chosen

for implementation of services.

The scope of this paper covers the first two steps of

SOAD process. In the following sections, we present

Business process modeling generated through

Business Process Execution Language (BPEL) for

the IDS model architecture described in section

4.BPEL generates work flows and process

orchestrations.

6. Process Modeling For IDS Using BPEL:

The process modeling will be done for the

architecture that is explained in section 4. In that

architecture several components are web services.

 Hence the next task in SOAD process is to

perform Business Process Modeling using BPEL

which expresses the workflows.

Process Orchestration diagram is shown in figure 3.

The corresponding BPEL code given below.

IDSProcess.bpel

<process name="IDSProcess"

targetNamespace="http://ids.security.com/IDS/idsServices/

IDSProcess"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-

process/"

xmlns:client="http://ids.security.com/IDS/idsServices/IDS

Process"

xmlns:ora="http://schemas.oracle.com/xpath/extension"

xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/busi

ness-process/"

xmlns:ns1="http://oracle.com/sca/soapservice/Application1

/Project1/NetWrokPacketAnalyser"

xmlns:ns2="http://xmlns.oracle.com/pcbpel/adapter/jms/Ap

plication1/Project1/AlertManagerService"

xmlns:task="http://xmlns.oracle.com/bpel/workflow/task"

xmlns:taskservice="http://xmlns.oracle.com/bpel/workflow

/taskService"

xmlns:wfcommon="http://xmlns.oracle.com/bpel/workflow

/common"

xmlns:ns3="http://oracle.com/sca/soapservice/Application1

/Project1/VerifierService"

xmlns:ns4="http://oracle.com/sca/soapservice/Application1

/Project1/DigesterService"

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 116
Volume 2, Issue 1, February 2011

Figure 3: Business Process modeling for IDS

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 117
Volume 2, Issue 1, February 2011

xmlns:ns5="http://oracle.com/sca/soapservice/Application1

/Project1/BusinessRulesEngineService">

 <!—<!--

 PARTNERLINKS

 <!--

 The 'client' role represents the requester of this service.

It is used for callback. The location and correlation

information associated with the client role are

automatically set using WS-Addressing. - - >

Link myRole="execute_ptt"

name="NetWorkPacketAnalyser"

partnerLinkType="ns1:NetWorkPacketAnalyser"/>

 <partnerLink myRole="alertManager_role"

name="AlertManagerService"

 partnerLinkType="ns2:alertManager_plt"/>

 -->

 <partnerLinks>

 Request from IDS client service are received as

input by a proxy server. The proxy manager will

select a sample of packets and directs them to

Network packet analyzer through sendPayload()

method. The Network Analyzer will connect to its

partner links. and convert the packets into a standard

XML format by stripping the network and DLL

headers. This Meta data is sent for validation against

business rules.

The Rules engine is SOA enabled to allow the

organization to implement and customize the rules

based on the location of the IDS on the network. For

example in a large enterprise, HR may need a

different set of rules implemented as against the

finance and there may be some organizational rules

applicable to all departments. A web-service client

can allow for posting of rules to be consumed and

for rules to be published from one instance of the IDS

to another which is one of the many advantages of a

SOA enabled system.

The rules engine upon detecting anomaly will

automatically forward to alert agent component or

manual intervention component.

 The orchestration logic is represented below

<sequence name="main">

 <!-- Receive input from requestor. (Note: This

maps to operation defined in IDSProcess.wsdl) -->

 <receive name="receiveInput"

partnerLink="IDSClientService"

portType="client:IDSProcess" operation="process"

variable="inputVariable" createInstance="yes"/>

 <!--

 Asynchronous callback to the requester. (Note:

the callback location and correlation id is

transparently handled using WS-addressing.)

 -->

 <invoke name="NetworkPacketAnalyserService"

partnerLink="NetWrokPacketAnalyser"/>

 <scope name="Scope_1">

 <bpelx:annotation>

 <bpelx:general>

 <bpelx:property

name="userLabel">Business Rules

</bpelx:property>

 </bpelx:general>

 </bpelx:annotation>

 <sequence>

 <invoke name="VerifierService"

partnerLink="VerifierService"/>

 <scope

name="isManualInterventionRequired">

 <bpelx:annotation>

 <bpelx:pattern

patternName="bpelx:decide"></bpelx:pattern>

 </bpelx:annotation>

 <sequence>

 <bpelx:checkpoint

name="CheckBusinessRuleForManulaIntervention"/

>

 <invoke

name="InVokeBusinessRuleService"

partnerLink="BusinessRulesEngineService"/>

 </sequence>

 </scope>

 <flow name="Rules">

 <sequence>

 <invoke name="alertManager"

partnerLink="AlertManagerService"/>

 </sequence>

The high level design of Rules engine service is

shown in the Figure 4.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 118
Volume 2, Issue 1, February 2011

Figure 4: Rules Engine Service

The Rules Manager Interface will contact the Rules

Engine Service Interface by using the method

manageRules(). This service will invoke Rules

configarator. Concurrently another service called

Generic Interceptor Service will request for generic

rules from the RulesConfigarator through

getGenericRules() method. RulesConfigarator will in

turn contact RulesEngineDataStore through

fetchRules() method and will fetch both generic and

specific rules. Hence by using this service, each

administrative domain in an enterprise like HR,

Marketing etc can customize their own business

rules in conjunction with enterprise wide business

rules. So the use of this service has conquered one of

the challenges of IDS.

After passing the business rules check, the pay load

will be directed to verifier for second level of

checking. If this check is successful and found that

the packet is not harmful, packet will be released

otherwise it will be sent for heuristic and acute

scanner.

The corresponding orchestration logic is presented

below.

<sequence name="ManulaInterventionService">

 <sequence>

 <scope

name="AlertManulaInterventionToVerifier_1"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/busi

ness-process/"

xmlns:wf="http://schemas.oracle.com/bpel/extension/

workflow"

wf:key="AlertManulaInterventionToVerifier_1_glob

alVariable">

 <bpelx:annotation

xmlns:bpelx="http://schemas.oracle.com/bpel/extensi

on">

 <bpelx:pattern

patternName="bpelx:workflow"></bpelx:pattern>

 </bpelx:annotation>

 <variables>

 <variable

name="initiateTaskInput"

messageType="taskservice:initiateTaskMessage"/>

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 119
Volume 2, Issue 1, February 2011

 <variable

name="initiateTaskResponseMessage"

messageType="taskservice:initiateTaskResponseMes

sage"/>

 </variables>

 <sequence>

 <assign

name="AlertManulaInterventionToVerifier_1_Assig

nTaskAttributes">

 <copy>

 <from

expression="number(3)"/>

 <to

variable="initiateTaskInput"

 part="payload"

query="/taskservice:initiateTask/task:task/task:priorit

y"/>

 </copy>

 <copy>

 <from>

 <payload

xmlns="http://xmlns.oracle.com/bpel/workflow/task"

/>

 </from>

 <to

variable="initiateTaskInput"

 part="payload"

query="/taskservice:initiateTask/task:task/task:payloa

d"/>

 </copy>

 </assign>

 <invoke

name="initiateTask_AlertManulaInterventionToVerif

ier_1"

partnerLink="AlertManulaInterventionToVerifier.Ta

skService_1"

portType="taskservice:TaskService"

 operation="initiateTask"

inputVariable="initiateTaskInput"

outputVariable="initiateTaskResponseMessage"/>

 <receive

name="receiveCompletedTask_AlertManulaIntervent

ionToVerifier_1"

partnerLink="AlertManulaInterventionToVerifier.Ta

skService_1"

portType="taskservice:TaskServiceCallback"

operation="onTaskCompleted"

variable="AlertManulaInterventionToVerifier_1_glo

balVariable"

 createInstance="no"/>

 </sequence>

 </scope>

 <switch

name="humanIntervention">

 <case

condition="bpws:getVariableData('AlertManulaInter

ventionToVerifier_1_globalVariable', 'payload',

'/task:task/task:systemAttributes/task:state') =

'COMPLETED' and

bpws:getVariableData('AlertManulaInterventionToV

erifier_1_globalVariable', 'payload',

'/task:task/task:systemAttributes/task:outcome') =

'APPROVE'">

 <bpelx:annotation>

 <bpelx:pattern>Task

outcome is APPROVE</bpelx:pattern>

 <bpelx:general>

 <bpelx:property

name="userLabel">Task

outcome

 is

APPROVE</bpelx:property>

 </bpelx:general>

 </bpelx:annotation>

 <sequence>

 <assign/>

 <invoke

name="alertManager"

partnerLink="AlertManagerService"/>

 </sequence>

The high level design of verifier service is shown in

figure 5.

In this service, the incoming pay load signature is

checked with the pre-populated database from

external and publicly known signatures and other IDS

instance detected signatures. This will be achieved by

using signatureVerification() method .

The updater Service listens for updates on a

daily basis from the Master DB, which is connected

on the cloud and sends web-service based publish

notices to all instances. The updater then picks up

these XMLs and their packet payloads and digests

them using fast and compressive hashing algorithms

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 120
Volume 2, Issue 1, February 2011

that compact this information and store it in the local

signature DB as signatures.

So by using this service, one more challenge

of IDS can be conquered such as frequent signature

updates taking up a lot of time and skilled

engineering resources, delivering a very high total

cost of ownership.

Figure 5: Verifier Service

Another functionality of this service is scanning

messages for possible attacks. As already mentioned

the verifier checks the hash of the XML and the

payload from the DB against the incoming XML and

payload of the sample window, which enables to

detect a match for a possible harmful packet. For

packets that have matched a possible known attack,

the packets and the payload can be sent into the

heuristic and acute scanner that can perform further

analysis to detect newer form of attacks or decisively

declare a packet/source as safe. This can over a

period of time detect new attacks and recover from

false alarms. Thus one more challenge of IDS such as

lacking in both accuracy and specificity and generate

too many false alarms is conquered.

Thus if a payload was marked as possibly

harmful, a fuzzy logic AI agent running in the

heuristic scanner can verify the safety or the hostility

of the payload to a pre-determined degree of

threshold (say 25% to 80%) before declaring and

publishing it to other instances through the Master

DB and also updating the local DB.

The Orchestration logic for Heuristics scanner and

digester is presented below

 <sequence name="Sequence_5">

 <invoke name="updateDigester"

partnerLink="DigesterService"/>

 </sequence>

 <sequence name="Sequence_5">

 <sequence>

 <invoke

name="HeuristicAcuteScanner"/>

 <scope name="Quearantine_1"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/busi

ness-process/"

xmlns:wf="http://schemas.oracle.com/bpel/extension/

workflow"

wf:key="Quearantine_1_globalVariable">

 <bpelx:annotation

xmlns:bpelx="http://schemas.oracle.com/bpel/extensi

on">

 <bpelx:pattern

patternName="bpelx:workflow"></bpelx:pattern>

 </bpelx:annotation>

 <variables>

 <variable name="initiateTaskInput"

messageType="taskservice:initiateTaskMessage"/>

 <variable

name="initiateTaskResponseMessage"

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 121
Volume 2, Issue 1, February 2011

messageType="taskservice:initiateTaskResponseMes

sage"/>

 </variables>

 <sequence>

 <assign

name="Quearantine_1_AssignTaskAttributes">

 <copy>

 <from

expression="number(3)"/>

 <to

variable="initiateTaskInput"

 part="payload"

query="/taskservice:initiateTask/task:task/task:priorit

y"/>

 </copy>

 <copy>

 <from>

 <payload

xmlns="http://xmlns.oracle.com/bpel/workflow/task"

/>

 </from>

 <to

variable="initiateTaskInput"

 part="payload"

query="/taskservice:initiateTask/task:task/task:payloa

d"/>

 </copy>

 </assign>

 <invoke

name="initiateTask_Quearantine_1"

partnerLink="Quearantine.TaskService_1"

portType="taskservice:TaskService"

 operation="initiateTask"

inputVariable="initiateTaskInput"

outputVariable="initiateTaskResponseMessage"/>

 <receive

name="receiveCompletedTask_Quearantine_1"

partnerLink="Quearantine.TaskService_1"

portType="taskservice:TaskServiceCallback"

operation="onTaskCompleted"

variable="Quearantine_1_globalVariable"

 createInstance="no"/>

 </sequence>

 </scope>

 <switch name="taskSwitch">

 <case

condition="bpws:getVariableData('Quearantine_1_gl

obalVariable', 'payload',

'/task:task/task:systemAttributes/task:state') =

'COMPLETED' and

bpws:getVariableData('Quearantine_1_globalVariabl

e', 'payload',

'/task:task/task:systemAttributes/task:outcome') =

'REJECT'">

 <bpelx:annotation>

 <bpelx:pattern>Task outcome is

REJECT</bpelx:pattern>

 <bpelx:general>

 <bpelx:property

name="userLabel">Task

 outcome

is

REJECT</bpelx:property>

 </bpelx:general>

 </bpelx:annotation>

 <sequence>

 <assign/>

 <invoke

partnerLink="DigesterService"

name="quarantineAndUpdateDigester"/>

 </sequence>

 </case>

 <case

condition="bpws:getVariableData('Quearantine_1_gl

obalVariable', 'payload',

'/task:task/task:systemAttributes/task:state') =

'COMPLETED' and

bpws:getVariableData('Quearantine_1_globalVariabl

e', 'payload',

'/task:task/task:systemAttributes/task:outcome') =

'APPROVE'">

 <bpelx:annotation>

 <bpelx:pattern>Task outcome is

APPROVE</bpelx:pattern>

 <bpelx:general>

 <bpelx:property

name="userLabel">Task

outcome is

APPROVE</bpelx:property>

 </bpelx:general>

 </bpelx:annotation>

 <sequence>

 <assign/>

 </sequence>

All the period, the Master Database is kept updated

through SOA components about attacks detected or

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 122
Volume 2, Issue 1, February 2011

false alarms nullified at the distributed locations. The

Master Database on the next day updates all IDS

instances local databases. So this makes the IDS as a

true IDPS (Intrusion Detection and prevention

system) because if the attack is detected at one

location, the attack model is published to all other

locations in the enterprise through a service.

 Hence this proposed model has conquered one more

challenge of IDS such as Current IDS are

concentrating on detection, but not on prevention

6.1 Sub Processes Identification

As specified in [8], the business process model

generated is the key artifact in SOAD process and

serves as input to four sub processes. There are four

sub processes.

1) Activity Services

2) Business Process services

3) Client Services

4) Data Services

To develop any of the 4 services discussed above, a

series of generic steps.

 Service Identification.

 Analysis and design.

 Technology selection.

 Coding and Testing.

 Integrating services.

In the context of our IDS model, we have identified

the 4 services as follows.

Activity Services: These are the applications that

support our IDS tool activities. These applications

not only support current state objectives but also

meet the future state objectives. For example

Different Algorithms (Pattern matching, Genetic,

Intelligent), log generators, graph generators are

identified as Activity services.

Business Process Services: Business Process model

workflows are expressed as BPEL, configured and

orchestrated to generate business process services. In

our IDS model Business Rules, Heuristic & acute

scanner, Updater & Digester are some of the

Business Process services.

Client Services: These services facilitate the delivery

of content through various channels such as web,

mobile etc. For our IDS model a User Interface to

customize business rules, displaying existing rules,

capturing values in the form fields, conversion policy

of converting a string into numerical value may be

some of the examples of client services.

Data Services: These services define the way to

store and access core data of the enterprise. For our

IDS model adding new signatures to database,

converting data to normalized structure and ensuring

that database is maintained in clustered structure,

access to master database are few examples of data

services.

The SOAD process diagram along with four services

are shown in figure 6.

For any IDS, several algorithms such as pattern

matching algorithms, Dos detection algorithms etc

are necessary for defense against severe threats.

Activity services will maintain such algorithms and

retrieve appropriate algorithm during the flow of

events. Also they maintain log generators which will

record all the activities of an attack. Graph generators

will use this data and generate attack graphs. On the

other hand, the client services will deal with

presentation of an user interface for entry, display of

rules and any conversion policies. The conversion

policies are necessary as the host and network packet

orders are different. The data services such as data

normalization, cluster maintenance and interactions

between local and master databases will aid us in

maintaining the database in normalized form.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 123
Volume 2, Issue 1, February 2011

Figure 6: Sub-Processes Interaction

This will ensure that a rule will be present in the

database only once. Also for efficient rule processing,

the data is maintained in structured form such that

related keywords are available in a single cluster. The

important task of data service is to maintain the

interactions with local database and master database.

Synchronizing the data from several databases will be

critical. The local database should update itself a new

signature and inform the same to master database.

The master database after a specified period of time,

should update the local databases of other domains

with all the new signatures. All these interactions

between client, activity and data services will be

synchronized by Business process services. The

architecture is highly scalable and greatly

interoperable.

7. RELATED WORK

In [12], based on danger theory, authors have

proposed a four layer model of Immune based

intrusion detection system. The first layer is danger

sense layer which handles alert correlation problems,

and to construct an intrusion scenario that would be

detected by reacting to the balance of various types of

alerts. The second layer is danger computation layer

which calculates computes danger according to the

intrusion alert 5-Tuple.The third layer is immune

response layer which will detect the abnormal

behavior. Fourth layer is spot disposal layer which

will remove the dangerous behaviors. In [13], authors

have proposed a Intrusion detection Intelligent agent

system where several intelligent agents are integrated

for providing in depth defense strategy against

intrusions.

Client Services

Conversion

Policies

UI

Entry Display

 Data Services

Data

Normalization

n

Cluster

Maintenance

Interactions of

Local and master

databases

Services

Integration

Deploy

Activity Services

Algorithms

Log

Generators
Graph

Generators

Business Process Services

 Work Flow

in BPEL
BPM

IDS

Requirements

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 124
Volume 2, Issue 1, February 2011

The main goals of this approach are its distributed

architecture, scalability, efficiency and the use of

intelligent agents. In [14], In order to enhance the

availability and practicality of intelligent intrusion

detection system based on machine learning in high-

speed network, an improved fast inductive learning

method for intrusion detection (FILMID) is designed

and implemented. Accordingly, an efficient intrusion

detection model based on FILMID algorithm is

presented. In [15], a design scheme of intrusion

detection system based on pattern matching

algorithm is proposed. Also authors aimed at several

key modules of intrusion detection system, a detailed

analysis of data acquisition module, protocol

processing module, feature matching module, log

record module and intrusion response module is also

given in this paper. Data acquisition module is

responsible for capturing various types of hardware

frames from network flow and handing these

hardware frames to data pretreatment module and

then the data pretreatment module strips off hardware

frame heads and checks the integrity of messages.

Based on application protocols hardware frames are

sent to response protocol analyzing and processing

modules respectively. For example, TELNET

protocol has a process of packet. The pattern

matching algorithm will judge for intrusion. If

intrusion is found, alarm is given by intrusion

response module and attack log is recorded. If no

intrusion, it will make a detailed record of protocol

operation log.

 Conclusion

The proposed architecture and its design can manage

the distributed system components efficiently. It

allows new computing resources and services to be

added dynamically. Most of the challenges faced by

current IDS are addressed by the proposed

architecture. Our future work aims at developing

algorithms that would allow global distribution of

various processing components.

References

 [1] Rebecca Bace and Peter Mell ―Intrusion

Detection systems‖ NIST Special Publication on

Intrusion Detection Systems

[2] McAfee network protection solutions ―Next

generation intrusion detection systems

[3]IBM Red book ―Patterns: SOA Foundation

Service Creation Scenario‖

[4] Ali Arsanjani ―How to identify, specify, and

realize services for your SOA ―

[5] Jim Amsden ―Service realization‖

[6] http://www-01.ibm.com/software/solutions/soa/

[7] Evdemon, J, 2005, ―The Four Tenets of Service

Orientation‖'http://www.bpminstitute.org/articles/arti

cle/article/the-four-tenets-of-service-orientation.html

[8]Shankar k,‖ Service oriented analysis and design

process for the enterprise‖, 7th WSEAS International

Conference on applied computer science, Venice,

Italy, November 21-23, 2007,Pgs 366-371 , ISBN ~

ISSN:1750-5117 , 978-960-6766-18-3,ACM

[9] Humphrey, Watts. ―A Discipline for Software

Engineering. Reading‖, MA: Addison-Wesley

Publishing Company, Inc., 1995.

[10]Zimmermann, O.; Krogdahl,P.; Gee, C., 2004,

―Elements of Service-Oriented Analysis and

Design‖.http://www.ibm.com/developerworks/webse

rvices/library/ws-soad1/

[11]Kambhampaty, S,chandra, S. ―Service Oriented

Architecture for Enterprise Applications‖, WSEAS

Transactions on Business and Economics. Issue 3,

Volume 2, July 2005.

[12]Haidong Fu, Xiguo Yuan, Liping Hu,‖ Design of

a Four-layer Model Based on Danger Theory and

AIS for IDS‖2007,IEEE.

[13] Amine Berqia and Gustavo Nacsimento,‖ A

Distributed Approach For Intrusion Detection

Systems‖2004, IEEE.

[14] Wu Yang, Wei Wan , Lin Guo, Le-Jun Zhang,‖
An Efficient Intrusion Detection Model Based On

Fast Inductive Learning ―Proceedings of the Sixth

International Conference on Machine Learning and

Cybernetics, Hong Kong, 19-22 August 2007,IEEE.

[15] Zhang Hu,‖ Design of Intrusion Detection

System Based on a New Pattern Matching

Algorithm‖ International Conference on Computer

Engineering and Technology 2009 IEEE.

Author Biographies

K.V.S.N.Rama Rao was born in Andhra Pradesh, India and has
attained his Masters in Computer Applications. from Andhra

University and currently pursuing PhD in Berhampur University.

His research areas are network security and Intrusion detection
systems.

Pandu Prudvi has around 15 years of experience in software
development field and currently working as SOA architect in

Mahindra Satyam, Hyderabad. Has rich expertise in service

oriented architecture and web services.

Manas Ranjan Patra was born in Orissa and has attained his

Doctorate from Hyderabad Central University and currently
working in Berhampur University. His research areas are network

security, Intrusion detection systems and intelligent systems.

